气溶胶探测的宽波段超广角均匀像面镜头设计

宋茂新 孙 亮 洪 津 孙晓兵

中国科学院安徽光学精密机械研究所光学遥感中心,安徽 合肥 230031

摘要 为设计满足全球大气气溶胶监测需求的星载宽波段超广角探测光学系统,解决广角镜头的像面均匀性问题。 根据性能要求选择了反远距的结构形式,对反远距广角镜头的前组角放大率参数与像差控制及后截距的关系进行了 理论分析,并对影响像面照度的光瞳像差进行了分析,得到增大前组角放大率不是获取大光阑彗差的必要条件。通 过低色散玻璃材料以及抛物面透镜的采用,设计出的光学系统光谱覆盖范围为443~910 nm,F数为4.5,全视场角为 118.8°,畸变小于10%,各波段调制传递函数(MTF)大于0.75@20lp/mm。通过分别采用序列及非序列方法对该系统像 面的相对照度进行了仿真分析,两种方法的结果一致,表明该系统像面照度的均匀性优于95%,各项指标满足要求。 关键词 光学设计;照度;光瞳像差;广角;偏振;色差;反远距 中图分类号 O439 文献标识码 A doi: 10.3788/LOP52.112206

Optical Design of Wide Spectral Range Aerosol Detection Lens with Wide-Angle and Uniform Image

Song Maoxin Sun Liang Hong Jin Sun Xiaobing

Center for Remote Sensing, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei, Anhui 230031, China

Abstract In order to design a wide spectral range and ultra wide–angle optical system that is suitable for spaceborne and meet the requirements of the global atmospheric aerosol monitoring. And to solve the problem of image surface uniformity of the wide– angle lens. The inverted telephoto structure is selected according to the performance requirements, the relationship between the angle magnification parameters of the former group and aberration control and rear cut–off distance is analyzed in theory. The pupil aberration that affect the illumination of image plane is also analyzed. Infer that increasing the angle magnification of the former group is unnecessary for getting great aperture coma. Through the use of low dispersion glass and parabolic lens, the optical system is designed and the spectral coverage is 443~910 nm, The *F* number is 4.5, full field angle of view is 118.8° , the distortion is less than 10%. Each band modulation transfer function (MTF) is more than 0.75@20 lp/mm. Simulation analysis is carried out on the relative illumination of system imaging using the sequential and non sequential methods respectively, the results of the two methods are consistent, show that image plane illumination uniformity of the system is better than 95%, the indicators meet the requirements.

Key words optical design; illuminance; pupil aberration; wide-angle; polarization; chromatic aberration; inverted telephoto

OCIS codes 220.1000; 220.2945; 080.3620; 110.2945;

1 引 言

参与大气异相化学反应的气溶胶会造成大气污染并危害人类健康,烟尘型气溶胶如火山灰还会影响到 航空运输,而气溶胶的散射吸收特性也是当前气候模拟的最大不确定性来源,因此探测气溶胶的时空分布, 对研究气溶胶对气候及人类活动的影响有重要意义。偏振探测被公认为描述气溶胶粒子特性的关键技术, 但需要将偏振信号作为角度及光谱的函数进行探测,即需要将散射光的偏振、多光谱及多角度信息联合,才 能确切获得气溶胶的光学厚度及微物理特性。宽波段超广角相机通过在面阵探测器前旋转切换滤光片及

基金项目:国家973计划(613225-02)、中国科学院重点项目(KGFZD-125-13-006)

作者简介:宋茂新(1983—),男,博士,副研究员,主要从事偏振遥感技术方面的研究。E-mail: smx0369@163.com

收稿日期: 2015-04-01; 收到修改稿日期: 2015-06-24; 网络出版日期: 2015-10-27

偏振片转轮,能够轻易获取宽覆盖范围的多光谱偏振信息,依赖平台移动使地面同一目标在不同视场角下 被观测可增获多角度信息,是目前已获应用的最成熟的星载气溶胶探测方案,如法国的偏振载荷 POLDER/ PARASOL^[1-2]。

照相物镜中一般将视场角超过90°划为超广角镜头,但超广角镜头设计和应用面临的一个重要问题是像面照度的非均匀性,常以相对照度来表征,相对照度为像面某一视场点与中心视场点的照度值之比。像面照度均匀性最主要的影响是降低系统的动态范围,一般会产生边缘视场曝光不足而中心视场过曝光的现象。因此在大动态范围定量化测量领域如气溶胶探测,保证像面照度的均匀性尤为重要。

目前光学设计上与像面照度均匀性相关的措施主要有:1)采用像方远心光路,通过减小像方视场角提高照度均匀性,但已被证明的结论显示^[3-5],像面照度与物方视场角的余弦四次方成正比,像方远心并不能直接提高像面照度的均匀性;2)利用较大的负(桶形)畸变^[6-7],例如鱼眼镜头,该方法本质上是保证像方视场角始终小于对应的物方视场角,是一种提高离轴视场照度的有效措施,但是大畸变影响图像分辨率及可判读性,有一定的局限性;3)在远离孔径光阑放置变密度中性滤光片^[8],该方法通过改变不同视场的系统透射率影响像面照度分布,其缺点在于系统的效率低且滤光片工艺复杂;4)利用渐晕^[9],在远离孔径光阑的光轴上放置圆形遮挡,相当于方法3)的简化;5)利用像差^[10-11](主要是光阑彗差)改变不同视场出瞳面积的大小,提高大视场的等效入瞳面积,提高照度,该方法是目前效果最为理想的措施。需说明的是,透镜减反膜的反射率随入射角的变化也会对像面照度均匀性产生影响,一般情况下该效应影响微弱不予考虑。

本文通过非球面透镜的引入,利用超广角镜头的负畸变与光阑彗差双重因素提高像面照度均匀性,并 利用光学设计软件进行了像质与相对照度的分析。

2 系统需求分析及设计指标

根据星载气溶胶探测的需求,采用在宽波段超广角相机中插入滤光片/偏振片转轮的方案¹¹²,通过转轮转动分时获取多光谱偏振图像信息,结合平台移动增加多角度信息。为满足全球覆盖及多角度数的要求, 需要相机有足够大的视场角。同时畸变不易过大,方便图像配准及判读。由于星载气溶胶探测地物背景的 复杂性,所以要求相机具有足够大的动态范围,且需要较高的像面照度均匀性。结构上还需要相机具有较 大的后截距空间以放置滤光片/偏振片转轮。相机的指标要求如表1、2所示。

表1 相机工作谱段

Table 1 Camera working spectrum							
Parameter		Content					
Central wavelength /nn	n 443	443 490 565 670 763 86					
Bandwidth /nm	20	20	20	20	10	40	20
		表2 相机	光学系统指标	要求			
	Table 2 Ind	ex requireme	nts for the ca	mera optical	system		
	Parameter			Requirement			
	Focal length/mm			6.19			
	<i>F</i> /#			4.5			
	Full field of view /($^{\circ}$)			118.8			
MTF @20 lp /mm				≥0.4			
Relative illumination				≥0.8			
	Distortion			≤0.1			
Detector pixel size /mm				0.026×0.026			

3 设计理论

广角长工作距离物镜均采用反远距的结构形式^[13-14],即大视场轴外光束经前组的发散作用,相对后组来 说视场角变小,从而达到广角的目的。同时,前组的发散使系统主面后移,获得比焦距长的工作距离。反远 距物镜的结构形式如图1所示。

图1反远距物镜的高斯光学结构

Fig.1 Gaussian optical structure of inverted telephoto lens

设 $\varphi_1 \setminus \varphi_2 \setminus \varphi$ 分别为前组、后组和总光焦度, *d* 为前后组间距, $h_1 \setminus h_2$ 为第一近轴光线在前后组的入射高度, $h_{p1} \setminus h_{p2}$ 为第二近轴光线在前后组的入射高度, u_2' 为第一近轴光线在后组的出射角, $u_{p1} \setminus u_{p1}'$ 为第二近轴光线在前组的入射角和出射角。在归一化条件下, 令 $\varphi_1 = 1$, $h_1 = 1$, $u_{p1} = -1$, 孔径光阑假设在后组,则 $h_{p2} = 0$ 。

前组主光线角放大率的倒数为

$$\frac{1}{\gamma_{\rm fr}} = \frac{u_{\rm p1}}{u_{\rm p1}'} = \frac{u_{\rm p1} - h_{\rm p1}\varphi_{\rm 1}}{u_{\rm p1}'} = 1 - d\varphi_{\rm 1} \,. \tag{1}$$

后截距为

$$l_{2} = \frac{h_{2}}{u_{2}} = \frac{h_{1} - du_{1}}{u_{2}} = 1 - d\varphi_{1}.$$
 (2)

后组光焦度为

$$\varphi_2 = \frac{1 - \varphi_1}{1 - d\varphi_1} \,. \tag{3}$$

根据(1)~(3)式可知,前组的角放大率倒数决定了反远距物镜的视场角及工作距离的大小,在后组视场一定的条件下,为增大视场角,必须增大1/γ_f,增大工作距离也同样需要增大1/γ_f。为简化结构降低像差,需尽量减小 φ₁、φ₂,当 d 确定时, φ₁随1/γ_f增大而减小, φ₂与1/γ_f成反比,因此超广角镜头需要足够大的1/γ_f。

进一步考虑反远距前组结构的复杂化,可进一步分为负负、正负及负正三种形式,其基本结构如图2所示, q₁₂为复杂前组的总光焦度,其余符号定义与图1一致。

图2 复杂前组反远距物镜的高斯光学结构

Fig.2 Gaussian optical structure of inverted telephoto lens with complex former group 根据近轴光线计算得前组角放大率倒数为

$$\frac{1}{\gamma_{\text{fr}}} = \frac{u_{\text{p1}}}{u_{\text{p2}}'} = 1 - d_2 \varphi_2 = 1 - (d_1 + d_2)\varphi_{12} + d_1(\varphi_{12} - \varphi_1).$$
(4)

根据(4)式,当 *d*₁=0时,结构退化为单负结构。容易证明,当 *φ*₁₂-*φ*₁>0时,(4)式有最大值,即采用负正 分离的前组结构具有最大的角放大率倒数 1/γ_i,且与分离间距 *d*₁成正相关。此外,负正结构不仅可减小 *φ*₁₂ 降低高级像差,还可使镜间距 *d*₁+*d*₂减小,有利于口径和总长尺寸的减小。

光瞳像差定义为将入瞳和出瞳分别作为物面和像面而具有的像差,其能够使离轴视场的出瞳面积大于 轴上视场从而改善像面照度的均匀性,也称像差渐晕^[15]。其中光瞳彗差(也称光阑彗差)是光瞳缩放的主要

激光与光电子学进展

因素,光阑彗差依赖于系统的像面像差,在假设光瞳面与像面为平面的条件下,三阶与五阶光阑彗差与像面像差塞德尔系数的关系^[15-16]可以表示为

$$\sum S_{\rm IIp} = \sum S_{\rm V} + J(u_{\rm pk}^{2} - u_{\rm pl}^{2}), \qquad (5)$$

$$\sum S_{II_{p}}^{II} = \sum S_{V}^{II} - \frac{3}{4} J(u_{pk}^{'4} - u_{p1}^{4}), \qquad (6)$$

式中 $\sum S_{\Pi_{p}}$ 、 $\sum S_{\Pi_{p}}^{I}$ 分别为三阶与五阶光阑彗差, $\sum S_{V}$ 、 $\sum S_{V}^{I}$ 分别为三阶和五阶像面畸变,J为拉氏不变量, u'_{ak} 为第二近轴光线在最后表面的出射角, u_{al} 为第二近轴光线在第一表面的入射角,且等于系统视场角。

由(5)、(6)式可知,由于五阶光阑彗差中 u'_{pk}与三阶的符号相反且次数更高,所以较小的 u'_{pk}值仍可具有较大的光阑彗差,即通过降低前组角放大率倒数 1/γ_{tr}来增大 u'_{pk}以获取大较光阑彗差的结论^[11,18]有一定局限性。 而通常为了获得较大五阶光阑彗差的方法就是在反远距结构前组远离光阑位置引入非球面,轴外主光线入射 高度大的非球面,不仅能够校正像散和畸变还可以改善像面照度。例如本文系统,其像差系数如表3所示。 表3系统与抛物面的畸变及光阑彗差系数

Table 3 Distortion and aperture coma coefficient of system and parabolic surface

	$S_{ m v}$	$S_{\mathrm{I\!Ip}}$	$S_{ m V}^{ m II}$	$S^{\mathrm{I\hspace{-1pt}I}}_{\mathrm{I\hspace{-1pt}I}\mathrm{p}}$
System sum	53.744	-541.779	547.358	1990.182
Parabolic surface	-1737.766	-412.351	4733.666	2129.605

4 设计结果及性能

根据以上分析可知,要保证系统调制传递函数(MTF),需要较大的1/γ_{fr},为满足像面照度和畸变要求,需 要引入非球面。最终系统光路采用了负正分离的前组结构以获取最大的1/γ_{fr},如图3所示,孔径光阑放置在后 组前焦面附近,形成像方远心光路,以保证滤光片稳定的光谱响应。第一块负透镜采用了融石英材质,主要用 于空间环境的防护。第二块负透镜凹面为抛物面,与前组的正透镜联合校正系统畸变,并产生一定的光瞳像 差补偿像面照度,是系统的关键特征。后组采用三组双胶合透镜主要用于校正前组的残余像差及系统色差。

图 3 光学系统结构 Fig.3 Structure of optical system 薄透镜光学系统的初级位置色差 C_1 及倍率色差 C_2 ^[16]分别为

$$\sum C_1 = \sum h^2 \frac{\varphi}{\nu} \quad , \tag{7}$$

$$\sum C_{\rm II} = \sum h_{\rm p} h \frac{\varphi}{\nu} \,, \tag{8}$$

式中 h, h, 分别为第一, 二近轴光线在透镜的入射高度, φ 为透镜光焦度, ν 为透镜材料的阿贝数。色差大 小取决于透镜的光焦度分配与材料选择, 广角镜头由于前组透镜的 h, 值大, 所以倍率色差是色差校正的难 点。而在结构形式一定的条件下, 透镜材料是色差校正的关键, 对于透镜材料的选择, 原则上要尽量选择色 散小, 折射率大的玻璃。在利用正负透镜组合消色差时, 一般在正光焦度透镜组中, 正透镜宜选阿贝数较大 的冕牌玻璃, 负透镜选阿贝数较小的火石玻璃, 在负光焦度透镜组中恰好相反。因此, 系统中的第二片负透 镜选用了 NLAK21_SCHOTT, 为最小化倍率色差, 系统还选用了异常色散材料 NPK51_SCHOTT。最终系统 的结构参数如表4所示, 性能分析结果如图4~6所示。

	Table 4 Detailed parameter	rs of the camera optical system	m
Surface number	Radius /mm	Thickness /mm	Glass
Obiect	infinity	infinity	
1	141.905	14.000	SILICA_SPECIAL
2	75.394	41.066	
3	188.877	8.000	NLAK21_SCHOTT
4	33.951 (K=-1)	57.777	
5	227.487	6.000	NPSK53A_SCHOTT
6	44.514	97.084	
7	78.497	14.981	LAFN7_SCHOTT
8	-47.777	5.000	SF4_SCHOTT
9	-208.962	49.794	
Stop	infinity	1.000	
11	-21.221	18.800	NLAK8_SCHOTT
12	19.588	6.077	NPSK53A_SCHOTT
13	-23.523	0.100	
14	154.733	6.077	NBAK1_SCHOTT
15	-16.077	5.000	LAFN7_SCHOTT
16	-87.572	0.100	
17	69.435	5.000	NBK7_SCHOTT
18	22.194	11.144	NPK51_SCHOTT
19	-31.835	7.000	
20	infinity	4.000	NBK7_SCHOTT
21	infinity	2.000	
22	infinity	3.000	NBK7_SCHOTT
23	infinity	17.000	
	npow npow	10 15 10 15 10 15 10 15 10 15 equency /(cycles/mm) 充 MTF 曲线	20 20 20 20
	Fig.4 Curves	s of system MTF	
	59.40 Angle /(°) 44.55	443~910 nm	60 50- 40
-	29.70 14.85		30 20 10
-10 -5 0 Distor 图 5 系统	5 10 tion somtion souther the startion	-0.02 -0.0 La 图 6 系	0 0 0.01 0.02 tteral color /mm 统倍率色差曲线

5 像面照度的模拟计算结果

Zemax,CodeV等光学设计软件中像面照度的计算均依据Rimmer算法^[19],其假设物面为朗伯光源且像面为平面,将不同视场的出瞳沿光线方向向像面投影,则投影面积正比于像面照度。而影响投影面积的光学系统特性为畸变、(几何)渐晕及光瞳像差,通过光线序列追迹可转化为出瞳面积、倾斜及与像面间距三个几何因子。在不考虑透镜膜层引起的透过率差异,利用CodeV软件计算的相对照度结果如表5所示。

表5 相机光学系统详细参数

able 5 Detailed parameters	of the camera	optical	system
----------------------------	---------------	---------	--------

Wavelength /nm			Field of view /(°)		
	0	30	42	50	59.4
910	100.0	100.3	100.8	101.7	104.4
670	100.0	100.3	100.8	101.8	104.5
443	100.0	99.7	99.4	100.1	101.2

为对相对照度的计算结果进行验证,利用 LightTools 软件进行基于蒙特卡罗的随机光线追迹,为与 CodeV软件的条件保持一致,在建模时只包含透镜及光阑模型,透镜边缘为理想吸收体,透镜无膜层,在像 面上选定视场点进行反向照明模拟,得到三个波段五个视场点的辐射照度值,按照相对照度定义计算的结 果如表6所示。

	Table 6 Detailed p	parameters of the o	camera optical sys	stem	
Wavelength /nm	Field of view /(°)				
	0	30	42	50	59.4
910	100.0	100.2	100.8	102.1	104.8
670	100.0	100.0	101.0	101.8	104.5
443	100.0	100.0	100.0	100.2	101.8

表6 相机光学系统详细参数 la 6. Datailed parameters of the camera ontical sys

6 结 论

为满足星载气溶胶探测宽波段、超广角、高像面照度均匀性的光学镜头要求,对反远距结构进行了理论分析,得出角放大率最小的前组形式为负正结构。对光学系统像面照度的影响因素进行了总结,根据系统 三阶和五阶光阑彗差与像面畸变的关系,得出获取大光阑彗差不一定需要增大前组角放大率。通过抛物面 透镜的引入以及玻璃材料的合理选择,设计了全视场为118.8°,波段覆盖443~910 nm的光学系统,通过 CodeV软件分析得到光学系统各波段在20 lp/mm处MTF优于0.75,系统畸变小于10%,倍率色差小于0.021 mm。使用LightTools软件基于蒙特卡罗随机光线追迹对像面照度进行了模拟,模拟结果与CodeV的计算 结果一致,表明系统像面照度均匀性优于95%。

参考文献

- 1 Deschamps P Y, Bréon F M, Leroy M, *et al.*. The POLDER mission: Instrument characteristics and scientific objectives [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 598–615.
- 2 Andre Y, Laherrere J M, Bret-Dibat T, *et al.*. Instrumental concept and performances of the POLDER instrument[C]. SPIE, 1995, 2572: 79–90.
- 3 Reiss M. The Cos4 law of illumination[J]. J Opt Soc Am, 1945, 35(4): 283-288.
- 4 Qu Enshi, Zhang Hengjin, Cao Jianzhong *et al.*. Discussion of illuminance formula inoptical design[J]. Acta Opica Sinica, 2008, 28(7): 1364–1368.

屈恩世,张恒金,曹剑中,等.对光学设计中照度计算公式的讨论[J].光学学报,2008,28(7):1364-1368.

- 5 Slussareff G. A reply to max reiss[J]. J Opt Soc Am, 1946, 36(12): 0707.
- 6 Wang Liping. Optical design for dual spectral panoramic imaging system applied in corona detector[J]. Acta Photonica Sinica, 2010, 39(10): 1770-1774.

王丽萍. 双谱段全景电晕探测光学系统[J]. 光子学报, 2010, 39(10): 1770-1774.

7 Xue Qingsheng, Wang Shurong. Optical design of panoramic imager for atmospheric sounding in limb view[J]. Acta

Opica Sinica, 2013, 33(4): 0422001.

薛庆生, 王淑荣. 用于大气临边探测的紫外全景成像仪光学设计[J]. 光学学报, 2013, 33(4): 0422001.

8 Xue Qingsheng. Optical design of spaceborne low-distortion and super-wide-angle aerosol imager[J]. Acta Photonica Sinica, 2012, 41(1): 0015.

薛庆生. 星载超广角气溶胶探测仪均匀像面性光学设计[J]. 光子学报, 2012, 41(1): 15-20.

9 Zhong Xing, Zhang Yuan, Jin Guang. Illumination uniformity optimization of wide-viewing-field optical system[J]. Acta Opica Sinica, 2012, 32(2): 0322004.

钟 兴,张 元,金 光.大视场光学系统像面照度均匀性优化[J].光学学报,2012,32(2):0322004.

10 Wang Yongzhong. Some key problems about the design of IR thermal imaging fish-eye lens[J]. Acta Photonica Sinica, 2005, 34(7): 1078-1080.

王永仲. 红外热成像鱼眼镜头设计中若干特殊问题的处理[J]. 光子学报, 2005, 34(7): 1078-1080.

11 Xue Qingsheng, Wang Shurong, Chen Wei. Development of spaceborne wide-angle aerosol imager with low-distortion and uniform image surface[J]. Acta Photonica Sinica 2013, 42(4): 456-461.

薛庆生, 王淑荣, 陈 伟. 星载均匀像面低畸变广角气溶胶探测仪的研制[J]. 光子学报, 2013, 42(4): 456-461.

- 12 Qiu Zhenwei, Hong Jin, Li Shuang, *et al.*. Methods to simultaneously achieve radiometric and polarimetric accuracy for multichannel ultra-wide-angle polarimetric camera[J]. Acta Optica Sinica, 2013, 33(8): 264–269. 裘桢炜, 洪 津, 李 双, 等. 多通道超广角偏振相机辐射精度和偏振精度的同时实现方法[J]. 光学学报, 2013, 33(8): 264–269.
- 13 Zhang Jiyan, Huang Yuanqing, Xiong Feibing, *et al.*. Optical lens design with short-focus and ultra-wide FOV[J]. Laser & Optoelectronics Progress, 2013, 50(10): 102202.

张继艳,黄元庆,熊飞兵,等. 短焦距超广角镜头的光学设计[J]. 激光与光电子学进展, 2013, 50(10): 102202.

14 Zhang Baolong, Li Dan, Zhang Shaojing, *et al.*. Design of aspheric fisheye lens and study of distortion correction algorithms[J]. Acta Opica Sinica, 2014, 34(12): 1222001.

张宝龙,李 丹,张少敬,等.非球面鱼眼镜头设计及畸变校正算法研究[J].光学学报,2014,34(12):1222001.

15 Sasian J. Interpretation of pupil aberrations in imaging systems[C]. SPIE, 2006, 6342: 634208.

16 Wang Zhijiang. Optical Design Theory Basis[M]. Beijing: Science Press, 1985.

王之江.光学设计理论基础[M].北京:科学出版杜,1985.

- 17 Gaj M. Fifth-order field aberration coefficients for an optical surface of rotational symmetry[J]. Appl Opt, 1971, 10(7): 1642-1647.
- 18 Li Hongzhuang, Zhang Zhenduo, Liu Xinyue, *et al.*. Optical design of a wide spectral fish-eye lens[J]. Acta Photonica Sinica, 2012, 41(11): 1312-1316.

李宏壮, 张振铎, 刘欣悦, 等. 一款宽光谱鱼眼镜头的设计[J]. 光子学报, 2012, 41(11): 1312-1316.

19 Rimmer M P. Relative illumination calculations[C]. SPIE, 1986: 99–104.

栏目编辑:苏 岑